
LTL Checker plug-in 2011

1

LTL Checker plug-in 6.1.4

Fabrizio Maria Maggi

Last updated on Wednesday, July 27, 2011.

Introduction

The LTL Checker plug-in allows the user to check a log w .r. t. a given LTL model specifying a
number of settings. It is also possible to check a log w. r. t. a Declare model by preliminary
translating the Declare model (either generated through the Declare Miner or imported from the
file system) into an LTL model using the Declare2LTL plug-in. There are two versions of the
plug-in. The first one, the LTL Checker, requires an LTL model as input. The second one, the
LTL Checker Default, uses a predefined LTL model and does not require any LTL model as
input. The functionality of the plug-in can best be described by an example.

Example use of the plug-in

First, you need to start the checker. As the plug-in checks the conformance of a log w. r. t. a
given LTL reference model, you first need to load a log.

To use the LTL Checker a reference LTL model is also necessary. It is possible to import an
LTL model from the file system or generate it starting from a Declare model using the
Declare2LTL plug-in.

The structure of an LTL model must be compliant with the standard.ltl file which can be
downloaded on http://www.win.tue.nl/~fmaggi/downloads/standard.ltl

The LTL Checker Default does not require the user to specify an LTL model as input. It uses
standard.ltl as reference LTL model.

LTL Checker plug-in 2011

2

After the LTL Checker plug-in has been started, it asks the user for the necessary settings. In
particular, the following dialog appears:

In this dialog, you can specify which formulas of the LTL model you want to check.

In particular, selecting a formula in the list on the top-right hand side of the dialog, at the bottom
a description of the selected formula and a panel to set the formula parameters (if any) are
shown.

Note that, to improve the readability, the LTL formulas are listed using meaningful names (as
specified in the corresponding LTL model). The underlying LTL expressions are specified at the
end of the description of each formula (see picture above). If a formula is parametric the
description changes dynamically according to the values specified for each parameter.

On the top-left hand side of the dialog you can select or deselect all the formulas in the list and
also specify further checking options. In particular, you can choose to check all the cases in the
log w. r. t. the selected formulas, or check until the first failing pair instance-formula is found, or
check until the first successful pair instance-formula is found.

When a case in the log is checked w. r. t. an LTL formula the checking result is stored as an
attribute of the case itself. To improve the performance you can check the option skip if result is
known. The checker will not execute the checking again for the formulas whose checking result
is already known.

LTL Checker plug-in 2011

3

When you have selected the formulas to be checked, specified the parameters and opportunely
tuned the checking options, you can press Finish. After that the LTL Checker will start checking
the log.

After the checking has finished, a Checking Results object will be visualized. The checking
results visualization is bidimensional. In fact, you can analyze the results from two different
perspectives represented by the Rules inspector and the Instances inspector.

In the following screenshot the Rules inspector is shown:

It contains two different tabs. The first tab lists the satisfied rules, i.e., the rules satisfied for each
case in the log. The second tab lists the unsatisfied rules, i.e., the rules for which there exists at
least one incorrect case (where the rule is not satisfied).

Each tab of the Rules inspector is composed of three different frames. In the first frame all the
checked rules are listed, specifying both the name and the underlying LTL expression. When a
rule is selected, it is possible to read in the second frame a list of all the cases classified in
correct cases (where the selected rule is satisfied) and incorrect cases (where the selected rule
is not satisfied). In this frame the coverage of the selected rule is also specified, representing
the percentage of correct cases for that specific rule. When a case is selected, in the third frame
the sequence of the events of that case is shown. For instance, the above picture shows that
the selected chain succession constraint is not satisfied for case 3 because after the Receive
Payment activity there is no Send Invoice.

LTL Checker plug-in 2011

4

In the following screenshot the Instances inspector is shown:

It contains two different tabs. The first tab lists the correct process instances, i.e., the cases
satisfying each rule of the reference model. The second tab lists the incorrect process
instances, i.e., the cases for which there exists at least one rule of the model which is not
satisfied.

Each tab of the Instances inspector is composed of three different frames. In the first frame the
instances are listed represented by their ID. When a case is selected, it is possible to read in the
second frame a list of all the checked rules where it is specified whether the selected case is
correct w. r. t. each rule or not. In this frame it is also specified the health degree for the case
representing the percentage of satisfied rules for that specific case. In the third frame the
sequence of the events of the selected case is shown.

Plug-in

Classes

The LTL Checker plug-in contains 119 Java classes, which all reside in the
org.processmining.plugins.ltlchecker package or in sub-packages of it. In the following the
role of each sub-package and of the main Java classes is explained:

1. LTLChecker.java contains the checking method.
2. CheckVisualizerGUI.java holds the GUI visualized to specify the checker settings.

LTL Checker plug-in 2011

5

3. CheckResultsInstanceBrowser.java, CheckResultsRuleBrowser.java,
LTLVerificationResult.java and SlickerOpenCheckResults.java are used to build the
GUI to show the checking results.

4. CheckResultObject.java holds the results of the checker i.e. the matrix containing the
correct/incorrect cases for each rule and the satisfied/unsatisfied rules for each case.

5. model/LTLModel.java is the ProM object structured as an LTL model.
6. formulatree.* contains the Java classes to map each LTL formula into a tree structure.
7. importing/LTLModelImportPlugin.java holds the method to import an LTL model from

the file system.
8. parser.* contains the Java classes to parse an LTL model.
9. util/ParamData.java, util/ParamTable.java, util/Substitutes.java are used to set the

parameters (if any) in an LTL formula.
10. util/TreeBuilder.java is the Java class to create a tree structure starting from a parsed

LTL model.

